If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=1620
We move all terms to the left:
10x^2-(1620)=0
a = 10; b = 0; c = -1620;
Δ = b2-4ac
Δ = 02-4·10·(-1620)
Δ = 64800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64800}=\sqrt{32400*2}=\sqrt{32400}*\sqrt{2}=180\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-180\sqrt{2}}{2*10}=\frac{0-180\sqrt{2}}{20} =-\frac{180\sqrt{2}}{20} =-9\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+180\sqrt{2}}{2*10}=\frac{0+180\sqrt{2}}{20} =\frac{180\sqrt{2}}{20} =9\sqrt{2} $
| 41=z/10+38 | | 6x+10=29/5 | | 27–3f=-12 | | 7-6=3(5-2d) | | 79=7=9f | | 7x+1=90-40 | | -k-5k=-4 | | t-82/4=4 | | r/4-5=1 | | -5(q+-12)=85 | | 3=m-55/8 | | v+31/7=8 | | 5x+8x=3 | | 5x-10=15-83x+12x | | 5x+1=2x^2+9x | | (4/x)+7=19 | | 3(m-81)=3 | | v+17/4=6 | | 6(b-79)=42 | | 15x-8=4x-3 | | 4(f+5)=68 | | p/2+9=10 | | 2b/12=40 | | 9=15-3t | | 8(z-84)=96 | | 3y+7-y-8=24y+3-3y+13.5 | | 6x-25x^2+23x-6=0 | | 3.2(x-6.2)=5.76 | | q+44/9=9 | | p2+ 9= 10 | | 180-x=4(90-x)+6 | | 5=4h-11 |